46 research outputs found

    Enhancing Optical Gradient Forces with Metamaterials

    Full text link
    We demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics. A thin layer of double-negative or single-negative metamaterial can shrink the interwaveguide distance perceived by light, resulting in a more than tenfold enhancement of the optical force. This process is remarkably robust to the dissipative loss normally observed in metamaterials. Our results provide an alternative way to boost optical gradient forces in nanophotonic actuation systems and may be combined with existing resonator-based enhancement methods to produce optical forces with an unprecedented amplitude.Comment: 5 pages, 4 figures; supplemental information available from AP

    Linear CNNs Discover the Statistical Structure of the Dataset Using Only the Most Dominant Frequencies

    Full text link
    We here present a stepping stone towards a deeper understanding of convolutional neural networks (CNNs) in the form of a theory of learning in linear CNNs. Through analyzing the gradient descent equations, we discover that the evolution of the network during training is determined by the interplay between the dataset structure and the convolutional network structure. We show that linear CNNs discover the statistical structure of the dataset with non-linear, ordered, stage-like transitions, and that the speed of discovery changes depending on the relationship between the dataset and the convolutional network structure. Moreover, we find that this interplay lies at the heart of what we call the ``dominant frequency bias'', where linear CNNs arrive at these discoveries using only the dominant frequencies of the different structural parts present in the dataset. We furthermore provide experiments that show how our theory relates to deep, non-linear CNNs used in practice. Our findings shed new light on the inner working of CNNs, and can help explain their shortcut learning and their tendency to rely on texture instead of shape

    Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.

    Get PDF
    Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field

    LUCID-GAN: Conditional Generative Models to Locate Unfairness

    Full text link
    Most group fairness notions detect unethical biases by computing statistical parity metrics on a model's output. However, this approach suffers from several shortcomings, such as philosophical disagreement, mutual incompatibility, and lack of interpretability. These shortcomings have spurred the research on complementary bias detection methods that offer additional transparency into the sources of discrimination and are agnostic towards an a priori decision on the definition of fairness and choice of protected features. A recent proposal in this direction is LUCID (Locating Unfairness through Canonical Inverse Design), where canonical sets are generated by performing gradient descent on the input space, revealing a model's desired input given a preferred output. This information about the model's mechanisms, i.e., which feature values are essential to obtain specific outputs, allows exposing potential unethical biases in its internal logic. Here, we present LUCID-GAN, which generates canonical inputs via a conditional generative model instead of gradient-based inverse design. LUCID-GAN has several benefits, including that it applies to non-differentiable models, ensures that canonical sets consist of realistic inputs, and allows to assess proxy and intersectional discrimination. We empirically evaluate LUCID-GAN on the UCI Adult and COMPAS data sets and show that it allows for detecting unethical biases in black-box models without requiring access to the training data.Comment: 24 pages, 6 figures, 1st World Conference on eXplainable Artificial Intelligenc

    Tunable terahertz frequency comb generation using time-dependent graphene sheets

    Get PDF
    We investigate the interaction between electromagnetic pulses and two-dimensional current sheets whose conductivity is controlled as a function of time by the generation of photocarriers, and we discuss its applicability to tunable frequency comb generation. To this aim, we develop an analytical model that permits the calculation of the scattered waves off a thin sheet with time-dependent, dispersive sheet conductivity. We evaluate the transmitted spectrum as a function of the dispersive behavior and the modulation frequency of the number of photocarriers. We conclude that such active materials, e.g., time-dependent graphene sheets, open up the possibility to manipulate the frequency of incident pulses and, hence, could lead to highly tunable, miniaturized frequency comb generation

    Do Optomechanical Metasurfaces Run Out of Time?

    Get PDF
    Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies

    Frequency converter implementing an optical analogue of the cosmological redshift

    Full text link
    According to general relativity, the frequency of electromagnetic radiation is altered by the expansion of the universe. This effect--commonly referred to as the cosmological redshift--is of utmost importance for observations in cosmology. Here we show that this redshift can be reproduced on a much smaller scale using an optical analogue inside a dielectric metamaterial with time-dependent material parameters. To this aim, we apply the framework of transformation optics to the Robertson-Walker metric. We demonstrate theoretically how perfect redshifting or blueshifting of an electromagnetic wave can be achieved without the creation of sidebands with a device of finite length.Comment: 6 pages, 3 figure
    corecore